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Network Representation for Lossless Symmettical
Discontinuities in a Multimode Waveguide

CHUNG-LI REN

Abstract—It is shown that a symmetrical, lossless 2 N-port may
be represented by an equivalent circuit, a 2 N-port lattice network,
which is a 2 N-port generalization of the known two-port symmetrical
lattice. The approach employed here in finding the equivalent cir-
cuits is based on the fact that any symmetrical 2 N-port may be de-
composed into two general N-port networks, each of which represents

the opencircuit or short-circuit bisected structures.
N
A a symmetric, lossless 2/N-port network which is
often encountered in connection with disconti-
nuity structures in a multimode waveguide. The physi-
cal configuration may involve either conducting ob-
stacles in the waveguide, transverse apertures, or
apertures in the waveguide wall, and the structure is
assumed to be symmetric in the sense that there exists
a transverse plane of bisection. While equivalent circuits
for arbitrary two or three ports can easily be constructed
in terms of either the admittance or the impedance
matrix elements, the equivalent circuits for networks
with more than three ports, to be introduced in the
following, are not generally available in the literature.
For a symmetrical structure, the overall scattering,
impedance or admittance matrix is found to be com-
prised of the sum of two matrices fixing the responses to
symmetrical and antisymmetrical excitation, respec-
tively. The constraint of conservation of energy is there-
fore applicable separately to the parameters representa-
tive of symmetric and of antisymmetric excitation, or
alternatively to the open-circuit short-circuit bisected
structures [1]. The general approach employed here in
finding the equivalent circuits is based on the fact that
any symmetrical 2/N-port may be decomposed into two
general N-port networks, each of which represents the
open-circuit or short-circuit bisected structures. The
resultant equivalent network is a 2 NV-port generalization
of the known two-port symmetrical lattice structure,
and will be called the 2N-port lattice network. The
equivalent circuits of the general lossless N-ports occur-
ring in the bisected structures are presented in terms of
the admittance matrix elements [2].

I. INTRODUCTION
EQUIVALENT circuit has been found for
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IT. NETWORK ANALYSIS FOR LOSSLESS, SYMMETRIC
MULTIMODE DISCONTINUITIES

A. The Basic Problem

Consider the configuration in Fig. 1 where a perfectly
conducting symmetric obstacle is situated in a uniform
waveguide bounded by perfectly conducting walls and is
capable of propagating N modes. The characteristics of
the far fields of any structure (involving propagating
modes only) are describable in terms of either standing-
wave or traveling-wave amplitudes at modal reference
planes chosen at a distance several wavelengths away
from the obstacle plane z=0. Such formulations give
rise to impedance matrix or scattering matrix descrip-
tions of the 2 N-port network equivalent of the structure.
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Fig. 1. Symmetric multimode discontinuity. (a) Physical

structure. (b) Equivalent network.

B. Scattering Matrix for Symmetrical
2N-Port Structures

Let S be the scattering matrix defined as

a B
b = Sa, a= ( ), ( >,
a® B®

where a®¥ and a® are the incident mode vectors for the
electric field (voltages) at terminals (1) and (2), respec-
tively. b® and h® are the corresponding reflected mode
vectors (Fig. 1). For a general 2N-port structure with
reflection symmetry as portrayed in Fig. 1, § must
satisfy S=+St~! [3] where
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and 1y is the N X N unit matrix. Thus, S may be written
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with A and B representing N XXV submatrices. S in (2)
may now be decomposed into two partial matrices, one
corresponding to symmetrical, and the other to anti-
symmetrical, excitation. The same decomposition may
be achieved by the bisection theorem [1].

Let us write a of (1) as a sum of symmetrical and anti-
symmetrical excitations, which are denoted by super-
script ¢ or o, respectively;

a=a'+ a° 3)
where
e e e 1 1 +1
a’ = x°a, T = *—( v N) (3a)
2 \+1y In/ avscenw

By substituting (3) into (1) and operating in (1) with
=¢ and = defined in (3a), we get

2

. 1 s® +s°
sl
2 \ts° $°/ anyan

with s® and s° denoting N X N submatrices and defined
by s*=A+4B and s°=A—B. S, and S, give rise to the
even and odd responses, i.e., bo = Sca.

S=Se+ Sua

C. Decoupling of the Pariial Networks

If we apply the condition of energy conservation in
a lossless network to S of (4), S8*=1,y, we may verify
that

sos” = 1x

sos%" = 1y. (5)
The conditions obtained in (5) highlight the decoupling
of the overall structure into even and odd partial net-
works since s° and s° are actually the N XN scattering

matrices appropriate to a general lossless N-port net-
work.

III. EQuivaLENT CIirRcUIT REPRESENTATION FOR
SYMMETRICAL 2ZN-PORT STRUCTURES

A. The Equivalent Circuit

For a representation in terms of an equivalent net-
work containing conventional circuit elements, it is use-
ful to obtain the impedance or admittance matrix via

= (121\] + S)(lgN - S)_1 or Y = (121\{ - S)(lzN + S)*l.
For networks defined by (2) or (4),we get

Z=2,+ 2, Y=Y.+Y, (6)
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Equivalent circuit for symmetric 2 N-port network.

Evidently the partial matrices z* and z°, or y* and y°,
may be realized separately as two general lossless N-
port networks which again satisfy the condition of con-
servation of energy.

To construct an equivalent circuit involving the open-
and short-circuit partial matrices in (8), we recall the
impedance and admittance matrices of a two-port lattice
network, which is shown in Fig. 2:

1 Ze_’_zo 2¢ — 0 1 e_|_ 0 € __ A0
Z=‘< ) Y=_<y yey y)‘ ©
2 20— g0 ze+zo 2 ye_yo ye_|_yo

One observes from (6), (7), and (9) that the coupling
between any two ports of a 2 N-port symmetrical struc-
ture, when the remaining ports are all open-circuited or
short-circuited, respectively, is similar to that of the
two-port lattice network portrayed in Fig. 2. It has been
found that, by utilizing the basic lattice coupling char-
acteristics, the equivalent circuit for a symmetrical 2N-
port can be constructed as shown in Fig. 3. Such an
equivalent circuit, which will be called 2N-port lattice
network of which the two-port lattice network is but a
special case, is shown in the Appendix to represent a
general 2N-port symmetrical structure which is char-
acterized as in (2) or (4).
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As is well known, a general lossless reciprocal N-mode
junction or 2N-port network must have in its network
description a number of independent real parameters
(scattering coefhicient amplitudes and phases, impedance
matrix elements, etc.) given by V=NQ2N-+1), where
N is the number of propagating modes coupled by the
discontinuity. If the junction is also symmetrical, V is
reduced to V=N(N+1) which is exactly the sum of the
number of independent elements in the reciprocal N-
port partial networks, zs or ys appearing in the 2 N-port
lattice structure.

B. Equivalent Circuits for 2N-Port Pure Shunt
and Pure Series Networks

Although we have shown the equivalent circuit in its
most general form, it is of interest to point out two
special cases which occur frequently in various problems.

First we consider a symmetrical 2N-port structure
which reduces to a short circuit for antisymmetrical ex-
citation. This implies that S,= —=° [(3a) and (4)], and
one may derive directly from (6)—(8) that the admit-
tance matrix for this case does not exist (¥Y,— ») while
the impedance matrix reduces to Z=2Z,(Z,=0). The
equivalent circuit for such a structure is apparently a
pure shunt network which may be obtained directly
from Fig. 3 by short-circuiting all of the N ports of the
partial networks z°. The resultant equivalent circuit is
identical to that proposed by Felsen, Kahn and Levey
[4] (Fig. 4).

Alternatively, if the given structure becomes open-
circuited when excited symmetrically, we have instead
the relation S,=7¢ which leads to an infinite impedance
matrix (Z,— «). In this case, the network property can
only be defined by an admittance matrix Y =Y,(Y.=0)
which implies that all of the N ports of the partial net-
works y¢ in Fig. 3 are open-circuited. We obtain thereby
the equivalent circuit for 2/N-port pure series structures
(Fig. 5).

IV. ArPPLICATION TO A Two-MODE SYMMETRICAL
DISCONTINUITY STRUCTURE

As an illustration, let us consider the case of a sym-
metrical, lossless discontinuity in a waveguide propa-
gating two modes. We assume that both modes are
coupled through the discontinuity structure. The equiv-
alent circuit representation for a two-mode coupling
structure may be obtained directly from Fig. 3 and is
shown as a four-port lattice network in Fig. 6 where z°
and z° (or y* and y°) are represented conveniently by
Weissfloch two ports [5]. This equivalent circuit is use-
ful for the measurement of two-mode symmetrical dis-
continuities by a resonant cavity technique [6] if the
cavity may be excited in the open-circuit or short-
circuit bisection modes, or alternatively, if the resonance
corresponds to symmetrical or antisymmetrical excita-
tion (this may be achieved, for example, by symmetrical
motion of two movable end plates of the cavity) [6].

REN: LOSSLESS SYMMETRICAL DISCONTINUITIES
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Fig. 4. Equivalent circuit for 2 N-port pure shunt structures.
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Fig. 5. Equivalent circuit for 2N-port pure series structures.

For symmetrical excitation [Fig. 7(a) ], the equivalent
circuit in Fig. 6(b) is reduced to Fig. 7(b) and the prob-
lem is thus simplified to measuring the two port z¢ or y°
as portrayed in Fig. 7(c); the Weissfloch transformed
network is convenient for a systematic analysis of multi-
point data taken on such a structure.

Similarly, for antisymmetrical excitation [Fig. 8(a)],
the measurement is reducible to that in Fig. 8(c).

APPENDIX
GENERALITY OF THE 2N-PorT LATTICE NETWORK

To show the generality of the 2N-port lattice net-
work, we must first verify that an open- or short-circuit
occurs at the network ports of the partial networks z
or yo when we open-circuit or short-circuit the corre-
sponding ports of the 2N-port lattice network. Let us
connect a load impedance Z;, to all but the teriminals of
mode ¢ of the 2N-port lattice network, so that the re-
sultant circuit is as shown in Fig. 9(a). From simple
symmetry arguments, one finds that the voltage and
current distribution at the load of each mode will be as
indicated in Fig. 9(b), from which it is easy to see that
the load impedance of the partial networks zo or yo for
each of the N modes is Z;; i.e., Vy/ift=Vp/ifp=2Z1.
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Fig. 6. Four-port lattice network.
1 3 [ 2
e Y iy
1 3 2. 4 M 3 4 v v
1 _3 4 i

i 1
~—
vi?o-— Z o 1Y o e e E - zeorle ——
e z ory 2%0ry e meg E A DN |
OR ~ ~ o~ I 2
2 Y 4

Dype ty; 4 %
N =
3 '
(a) ) ()
Fig. 7. Partial network for symmetrical excitation.
|3 \ 2
Zooro ———— 29 y0 -_——-
R
1 3 ] oY Jv. v
— 3 4 i !
vif’__ z r—o‘vi 24N 4 - _z_°orl° o
I 49,02 T F R
Y
Vjt:: ~ ::‘V; ) o

(a) (b) (c)

Fig. 8. Partial network for antisymmetrical excitation.

Therefore, zo or yo in Fig. 3 is indeed the open-circuit
impedance (Z.= ») or short-circuit admittance matrix
(Z1=0), respectively.

Next, we will show the validity of the equivalent cir-
cuit of Fig. 3 as regards the lattice coupling prescribed
in (6) and (7). To do this, let us assume that all but the
network ports of the ith and jth modes are open- or
short-circuited. The 2N-port lattice network thus re-
duces to the four-port lattice network shown in Fig. 10.
The diagonal submatrices of Z or ¥ with mode indices ¢
and j, (z;;°+z:,°)/2 or (y;*+¥.:,°)/2 as defined is (6) and
(7), respectively, are, by definition, the impedance ma-
trix or admittance matrix for the network ports ¢ and j
when ¢4 Nandj-+ Nareopen-circuited or short-circuited,
respectively [Fig. 10(b)]. If the network shown in Fig.
10(a) is indeed the equivalent of that in Fig. 10(b), we
should obtain an identical representation of the imped-
ance or admittance matrix between their corresponding
ports. This may be verified from the network of Fig. 11,
which is obtained from the four-port lattice network of
Fig. 10(a) with its network ports i+ N and j+ N open-
circuited or short-circuited, respectively. It is found that
the impedance matrix of Fig. 11(a) is (z.,6+2z,,°) /2 while
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(a)

Fig. 9. Definition of the partial networks z° and y.”.

(b)

Equivalent circuit for the submatrices of Z or Y
with indices 7 and j.
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Equivalent circuits for off-diagonal elements of
(2,,°—2,°)/2 and (¥ —y.,,°)/2.

Fig. 12.
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the admittance matrix of Fig. 11(b) is (y;°+y.°) /2. The
connection of one-to-one ideal transformers in the
equivalent circuit of Fig. 10 (and Fig. 3) is necessary
since the flow of loop currents between the partial net-
works z;;° or y;;*° in Fig. 11 must be prevented.

To conclude our proof, the ofi-diagonal submatrices
(z,6—2.,°)/2 or (y:#—vy:°)/2 still remain to be identi-
fied. The diagonal elements of (z,;¢— z;,°)/2 are, by defi-
nition, the transfer impedance between port ¢ and ¢+ N,
or j and j+N, in Fig. 10(b). Here we notice that the
difference between the corresponding diagonal elements
of (z,,°—2,%/2 and of (z,;7+z;°) /2 is merely the sign
between the partial networks z,;# and z,,°. This is shown
clearly in Fig. 10 where ¢ and ¢+ XV are the network
ports of a two-port lattice network when j and j+ N are
open-circuited and vice versa. Similarly, Fig. (12a) may
be employed to show that the off-diagonal elements of
(z.;#— 2. /2 in the equivalent circuit of Fig. 10(a)are
the transfer impedances between the corresponding net-
work ports of Fig. 10(b). Analogous considerations ap-
ply to the identification of (yi6—y.;0)/2 as the transfer
admittances between the network ports of Fig. 10(a)
[see Fig. 11(b)].

Since the mode indices ¢ and j are chosen arbitrarily
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in the preceding discussion, the proof of generality for
the 2N-port lattice network is complete. Thus, we may
conclude that the network given in Fig. 3 is capable of
representing any lossless, symmetrical, 2 NV-port struc-
ture characterized as in (2) or (4).
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Perturbation Theorems for Waveguide Junctions,

with Applications

D. M. KERNS axo W. T. GRANDY, ]JR.

Abstract—Perturbation theorems are derived in the context of a
theory of waveguide junctions. These theorems express changes in
impedance or admittance matrix elements, due to changes in a wave-
guide junction, in terms of integrals over products of perturbed and
unperturbed basis fields associated with the junction and with its
adjoint. Media involved are required only to be linear.

Concepts of first-order perturbation theory are discussed briefly,
and the term “correct to the lowest order” is precisely defined. The
need of explicit theorems telling when one may expect results
actually correct to the lowest order is noted.

Two problems are solved approximately by the perturbation
approach:

1) reflection at the junction of rectangular waveguide with
filleted waveguide of the same main dimensions; and
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2) the effect of finite conductivity of both obstacle and wave-
guide wall for half-round inductive obstacles in rectangular wave-

guide.
Tperturbation theorems in the context of a theory
of waveguide junctions, to discuss briefly some of
the rationale and the peculiarities of the simplest ap-
plications of perturbation methods, and to solve sev-
eral problems that are illustrative as well as useful.
The presentation of the theorems in Section I11 of
this paper was inspired largely by a paper by Mon-
teath,! which gives theorems of the same type, but in a

I. INTRODUCTION
HE PURPOSE of this paper is to present certain

1 G. D. Monteath, “Application of the compensation theorem to
certain propagation and radiation problems,” Proc. IEE (London),
pt. IV, vol. 98, pp. 23-30, 1951.



