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N[etwork Representation for Lossless Symmetrical

Discontinuities in a Multimode Waveguide

CHUNG-LI REN

Abstract—It is shown that a symmetrical, lossless 2N-port may

be represented by an equivalent circuit, a z N-port lattice network,

which is a 2 N-port generalization of the known two-port symmetrical

lattice. The approach employed here in finding the equivalent cir-

cuits is based on the fact that any symmetrical 2 IV-port may be de-

composed into two general N-port networks, each of which represents

the opencircuit c~r short-cticuit bisected structures.

I. INTRODUCTION

A

N EQUIVALENT circuit has been found for

a symmetric, lossless 2N-port network which is

often encountered in connection with disconti-

nuity structures in a multimode waveguide. The physi-

cal configuration may involve either conducting ob-

stacles in the waveguide, transverse apertures, or

apertures in the waveguide wall, and the structure is

assumed to be symmetric in the sense that there exists

a transverse plane of bisection. While equivalent circuits

for arbitrary two or three ports can easily be constructed

in terms of either the admittance or the impedance

matrix elements, the equivalent circuits for networks

with more than three ports, to be introduced in the

following, are not generally available in the literature.

For a symmetrical structure, the overall scattering,

impedance or admittance matrix is found to be com-

prised of the sum of two matrices fixing the responses to

symmetrical and antisymmetrical excitation, respec-

tively. The constraint of conservation of energy is there-

fore applicable separately to the parameters representa-

tive of symmetric and of antisymmetric excitation, or

alternatively to the open-circuit short-circuit bisected

structures [1]. The general approach employed here in

finding the equivalent circuits is based on the fact that

any symmetrical 21V-port may be decomposed into two

general N-port networks, each of which represents the

open-circuit or short-circuit bisected structures. The

resultant equivalent network is a 21V-port generalization

of the known two-port symmetrical lattice structure,

and will be called the 21V-port lattice network. The

equivalent circuits of the general lossless N-ports occur-

ring in the bisected structures are presented in terms of

the admittance matrix elements [2].
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1 I. NETWORK ANALYSIS FOR LOSSLESS, SYMMETRIC

hlULTIMODE DISCONTINUITIES

A. The Basic Problem

Consider the configuration in Fig. 1 where a perfectly

conducting symmetric obstacle is situated in a uniform

waveguide bounded by perfectly conducting walls and is

capable of propagating iV modes. The characteristics of

the far fields of any structure (involving propagating

modes only) are describable in terms of either standing-

wave or traveling-wave amplitudes at modal reference

planes chosen at a distance several wavelengths away

from the obstacle plane z =0. such formulations give

rise to impedance matrix or scattering matrix de~scrip-

tions of the 21V-port network equivalent of the structure.
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Fig. 1. Symmetric multimode discontinuity. (a) Physical
structure, (b) Equivalent network.

B. Scattering Matrix for Symmetrical

2N-Port Structures

Let S be the scattering matrix defined as

b = Sa,
a=c:) b=w “)

where afl) and a(z) are the incident mode vectors for the

electric field (voltages) at terminals (1) and (2), respec-

tively. b(l) and b(z) are the corresponding reflected mode

vectors (Fig. 1). For a general 2N-port structure with

reflection symmetry as portrayed in Fig. 1, S must

satisfy S = ~S~–l [3] where

and l.V is the NX IV unit matrix. Thus, S may be written

as

AB
s=

()B A 2.vx2,v ‘

(2)



82 IEEE TRANSACTiONS ON MICROWAVE THEORY AND TECHNIQUES FEBRUARY

with A and B representing N X N submatrices. S in (2)

may now be decomposed into two partial matrices, one

corresponding to symmetrical, and the other to anti-

symmetrical, excitation. The same decomposition may

be achieved by the bisection theorem [1].

Let us write a of (1) as a sum of symmetrical and anti-

symmetrical excitations, which are denoted by super-

script e or o, respectively;

~=ae+~. (3)

where

By substituting (3) into (1) and operating in (1) with

~’ and ~“ defined in (3a), we get

with se and s“ denoting NX N sub matrices and defined

by s’=A+B and SO=A– B. S. and S0 give rise to the

even and odd responses, i.e., b;= S:a.

C. Decoupling of the Partial Networks

If we apply the condition of energy conservation in

a lossless network to S of (4), SS* = 1zN, we may verify

that

S%”* = IN. (5)

The conditions obtained in (5) highlight the decoupling

of the overall structure into even and odd partial net-

works since se and so are actually the N X N scattering

matrices appropriate to a general Iossless N-port net-

work.

1I 1. EQUIVALENT CIRCUIT REPRESENTATION FOR

SYMMETRICAL 2N-PoRT STRUCTURES

A. The Equivalent Circuit

For a representation in terms of an equivalent net-

work containing conventional circuit elements, it is use-

ful to obtain the impedance or admittance matrix via

Z = (lj~ + S)(lz~ – S)-l or Y = (1,~ – S)(l~~ + S)-l.

For networks defined by (2) or (4) ,we get

Z=z, +zo Y= Ye+Yo (6)

‘;=+(+55)“=+-(+55 ‘7)
Here

z~=y ~-’= (lN + S:)(1N – s:)-’. (8)
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Fig. 2. Lattice network.
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Fig. 3. Equivalent circuit for symmetric 2N-port network.

Evidently the partial matrices z’ and z“, or ye and y“,

may be realized separately as two general Iossless N-

port networks which again satisfy the condition of con-

servation of energy.

To construct an equivalent circuit involving the open-

and short-circuit partial matrices in (8), we recall the

impedance and admittance matrices of a two-port lattice

network, which is shown in Fig. 2:

One observes from (6), (7), and (9) that the coupling

between any two ports of a 2N-port symmetrical struc-

ture, when the remaining ports are all open-circuited or

short-circuited, respectively, is similar to that of the

two-port lattice network portrayed in Fig. 2. It has been

found that, by utilizing the basic lattice coupling char-

acteristics, the equivalent circuit for a symmetrical 2N-

port can be constructed as shown in Fig. 3. Such an

equivalent circuit, which will be called 2N-port lattice

network of which the two-port lattice network is but a

special case, is shown in the Appendix to represent a

general 2N-port symmetrical structure which is char-

acterized as in (2) or (4).
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As is well known, a general Iossless reciprocal N-mode

junction or 2N-port network must have in its network

description a number of independent real parameters

(scattering coefficient amplitudes and phases, impedance

matrix elements, etc.) given by V== N(2N+ 1), where

N is the number of propagating modes coupled by the

discontinuity. If the junction is also symmetrical, V is

reduced to V== N(N+ 1) which is exactly the sum of the

number of independent elements in the reciprocal N-

port partial networks, z: or y: appearing in the 2N-port

lattice structure.

B. Equivalent Circuits for 2N-Port Pure Shunt

and Pure Serizs Networks

Although we have shown the equivalent circuit in its

most general form, it is of interest to point out two

special cases which occur frequently in various problems.

First we consider a symmetrical 2N-port structure

which reduces to a short circuit for antisymmetrical ex-

citation. This implies that So= – ~“ [(3a) and (4)], and

one may derive directly from (6)–(8) that the admit-

tance matrix for this case does not exist (Ye- ~ ) while

the impedance matrix reduces to Z = 26(20= O). The

equivalent circuit for such a structure is apparently a

pure shunt network which may be obtained directly

from Fig. 3 by short-circuiting all of the N ports of the

partial networks z“. The resultant equivalent circuit is

identical to that proposed by Felsen, Kahn and Levey

[4] (Fig. 4).

Alternatively, if the given structure becomes open-

circuited when, excited symmetrically, we have instead

the relation S.= r“ which leads to an infinite impedance

matrix (Z,+ cc). In this case, the network property can

only be defined by an admittance matrix Y = Y.(Y. = O)

which implies that all of the N ports of the partial net-

works ye in Fig. 3 are open-circuited. We obtain thereby

the equivalent circuit for 2N-port pure series structures

(Fig. 5).

IV. APPLICATION TO A TWO-MODE SYMMETRICAL

IIISCONTINUITY STRUCTtTRE

As an illustration, let us consider the case of a sym-

metrical, lossless discontinuity in a waveguide propa-

gating two modes. We assume that both modes are

coupled through the discontinuity structure. The equiv-

alent circuit representation for a two-mode coupling

structure may be obtained directly from Fig. 3 and is

shown as a four-port lattice network in Fig. 6 where z“

and zo (or y’ and y“) are represented conveniently by

Weissfloch two ports [51. This equivalent circuit is use-

ful for the measurement of two-mode symmetrical dis-

continuities by a resonant cavit}- technique [6] if the

cavity may be excited in the open-circuit or short-

circuit bisection modes, or alternatively, if the resonance

corresponds to symmetrical or antisymmetrical excita-

tion (this may be achieved, for example, by symmetrical

motion of two movable end plates of the cavity) [6].
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Fig. 4. Equivalent circuit for 2iV.port pure shunt structures.
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Fig. 5. Equivalent circuit for 2N-port pure series structures.

For symmetrical excitation [Fig. 7(a) ], the equivalent

circuit in Fig. 6(b) is reduced to Fig. 7 (b) and the prob-

lem is thus simplified to measuring the two port z“ or- ye

as portrayed in Fig. 7(c); the Weissfloch transformed

network is convenient for a systematic analysis of multi-

point data taken on such a structure.

Similarly, for antisymmetrical excitation [Fig. 8 (a) ],

the measurement is reducible to that in Fig. 8(c).

AFm~~IX

GENERALITY OF THE 2N-PoRT LATTICE NETWORK

To show the generality of the 21Wport lattice net-

work, we must first verify that an open- or short-circuit

occurs at the network ports of the partial networks z:

or y: when we open-circuit or short-circuit the corre-

sponding ports of the 2N-port lattice network, Let us

connect a load impedance ZL to all but the terirninals of

mode ; of the 2N-port lattice network, so that the re-

sultant circuit is as shown in Fig. 9(a). From simple

symmetry arguments, one finds that the voltage and

current distribution at the load of each mode will be as

indicated in Fig. 9(b), from which it is easy to see that

the load impedance of the partial networks z: or y: for

each of the N modes is ZL; i.e., Vj’/i,:’ = VjO/ijO ==ZL.
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Fig. 6. Four-port lattice network.
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Fig. 7. Partial network for symmetrical excitation,
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Fig. 8. Partial network for antisymmetrical excitation.

Therefore, z: or y; in Fig. 3 is indeed the open-circuit

impedance (ZL = w ) or short-circuit admittance matrix

(ZL = O), respectively.

Next, we will show the validity of the equivalent cir-

cuit of Fig, 3 as regards the lattice coupling prescribed

in (6) and (7). To do this, let us assume that all but the

network ports of the ith and jth modes are open- or

short-circuited. The 2 N-port lattice network thus re-

duces to the four-port lattice network shown in Fig. 10.

The diagonal submatrices of Z or Y with mode indices i

and ~, (zjj’ +zi,”) /2 or (y# +Yijo) /2 as defined is (6) and

(7), respectively, are, by definition, the impedance ma-

trix or admittance matrix for the network ports i and j

when i +Nand j+ Nare open-circuited or short-circuited,

respectively [Fig. 10(b) ]. If the network shown in Fig.

10(a) is indeed the equivalent of that in Fig. 10(b), we

should obtain an identical representation of the imped-

ance or admittance matrix between their corresponding

ports. This may be verified from the network of Fig. 11,

which is obtained from the four-port lattice network of

Fig. 10(a) with its network ports i+ N and j+ N open-

circuited or short-circuited, respectively. It is found that

the impedance matrix of Fig. 11 (a) is (z,J”+z~jO)/2 while

,tN

(a)

Fig. 9. Definition of the partial networks zo and y~,
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‘+”’’s.! f <,,C,, Y
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Fig. 10. Equivalent circuit for the submatrices of Z or Y
with indices i and j.
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Fig. 11. Equivalent circuits for diagonal submatrices. (a)
(Z,,’+Z,,0)/2. (b) (Y;je+Y;,e)/2.
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Fig. 12. Equivalent circuits for off-diagonal elements of
(2,,8 –2,,0)/2 and (y~,e–y,,”)/2.
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the admittance matrix of Fig. 11 (b) is (yi,” +y;jO)/2. The

connection of one-to-one ideal transformers in the

equivalent circuit of Fig. 10 (and Fig. 3) is necessary

since the flow- of loop currents between the partial net-

works Zzi 0’ ory;j”e in Fig. 11 must be prevented,

To conclude our proof, the off-diagonal submatrices

(z,,” – 2,;0)/2 or (y;j’ – yliO)/2 still remain to be identi-

fied. The diagonal elements of (z,je – 2;,0)/2 are, by defi-

nition, the transfer impedance between port i and i+ N,

or j and j+N, in Fig. 10(b). Here we notice that the

difference between the corresponding diagonal elements

of (z,j’ — zt~o) /2 and of (z,;’+ z~jO)/2 is merely the sign

between the partial networks Z,je and Z,,”. This is shown

clearly in Fig. 10 where i and i+ N are the network

ports of a two-port lattice network when j and j+ N are

open-circuited and vice versa. Similarly, Fig. (12a) may

be employed to show that the off-diagonal elements of

(z,j” – z,jO)/2 in the equivalent circuit of Fig. lO(a)are

the transfer impedances between the corresponding net-

work ports of Fig. 10(b). Analogous considerations ap-

“)/2 as the transferply to the identification of (y~j~ — y,j.

admittances between the network ports of Fig. 10(a)

[see Fig. Ii(b) ].

Since the mode indices i and j are chosen arbitrarily

VOL. MTT-14, No. 2 FEBRUAR!Y, 19sS

in the precedirlg discussion, the proof c~f generality for

the 2N-port lattice network is complete. Thus, we may

conclude that the network given in Fig,

representing any lossless, symmetrical,

ture characterized as in (2) or (4).
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Perturbation Theorems for Waveguide Junctions,

with Applications

D. M. KERNS AND W. T, GRANDY, JR,

.4bstracf-Perturbation theorems are derived in the context of a

theory of waveguide junctions. These theorems express changes in

impedance or admittance matriz elements, due to changes in a wave-

guide junction, in terms of integrals over prodkcts of perturbed and

unperturbed basis fields associated with the junction and with its

adjofnt. Media involved are required only to be linear.

Concepts of first-order perturbation theory are discussed briefly,

and the term “correct to the lowest order” is precisely defined. The

need of explicit theorems telling when one may expect results

actually correct to the lowest order is noted.

Two problems are solved approximately by the perturbation

approach:

I) reflection at the junction of rectangular waveguide with

filleted waveguide of the same main dimensions; and
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Z) the effect of finite conductivity of both obstacle and wave-
guide wall for half-round inductive obstacles in rectangular wave-

guide.

1. INTRODUCTION

T

HE PURPOSE of this paper is to present certain

perturbation theorems in the context of a theory

of waveguide junctions, to discuss briefly some of

the rationale and the peculiarities of the simplest ap-

plications of perturbation methods, and to solve sev-

eral problems that are illustrative as well as useful.

The presentation of the theorems in Section 11 I of

this paper was inspired largely by a paper by l\’lon-

teath,l which gives theorems of the same type, but in a

1 G. D. Monteath, “Application of the compensation theorem to
certain propagation and radiation problems, ” Proc. IEE (Lomton),
pt.IV, vol. 98, pp. 23–30, 1951.
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